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Spatial correlation effects of molecules on the helical structure of cholesteric liquid crystals
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An extended mean field theory that is somewhat different from the Maier-Saupe~MS! type of mean field
theory is proposed for cholesteric liquid crystals. This extended mean field theory is based on Lennard-Jones
and Devonshire’s mean field treatment of isotropic classical liquids. Unlike the MS type of mean field theory,
our treatment can include both orientation and spatial correlation effects of molecules. A set of mean field
parameters are introduced and the corresponding self-consistent equations are derived. The results show that
the spatial correlation of molecules may have non-negligible effects on the helical structure of cholesteric
liquid crystals.@S1063-651X~98!01803-0#

PACS number~s!: 42.70.Df, 64.70.Md
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I. INTRODUCTION

The cholesteric liquid crystal is generally regarded a
distorted form of the nematic mesophase and is character
by a macroscopic twist, i.e., the helical structure@1#. Besides
this helical structure there is no long-range order in the s
tial distribution of molecules. The existence of a finite pit
is a common feature of all materials found in the choleste
mesophase. This description of the cholesteric phase
twisted nematics is consistent with experimental observat
it provides at least a very good approximation to physi
reality. The helical structure results from the microsco
structure of molecules and the nature of the intermolec
interactions. From the point of view of global symmetry,
has been argued that cholesteric liquid crystals are mad
of chiral molecules and chirality is the major cause for t
macroscopic twist@2–5#. Based on this assumption, a fe
potential models were presented for the cholesteric phase
the formation of the helical structure can be explained by
corresponding molecular theory@2–7#. Most of the previous
molecular theory of cholesteric liquid crystals is based
Maier-Saupe’s~MS! mean field treatment of nematic liqui
crystals @8#,which has proven to be very successful in t
nematic case. Generally speaking, the MS type of mean
theory can be described as follows. First, one begins by w
ing down a model potentialV(rW1 ,VW 1 ,rW2 ,VW 2) that describes
the interaction between a pair of molecules, whererW i andVW i
denote the position and orientation vectors of thei th mol-
ecule. Second, one assumes that the local molecular arra
ment can be described by a distribution functi
f „nW (rW)•VW …, wherenW (rW),VW is the local director~direction of
the local nematic axis! and the orientation vector of mol
ecules, respectively. It should be noted according to this
sumption that the distribution functionf „nW (rW)•VW … will de-
pend only on the relative angle between the local direc
nW (rW) and the molecular orientation vectorVW , but indepen-
dent of the spatial coordinates of molecules. Third, for
571063-651X/98/57~4!/4289~7!/$15.00
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assumed distribution function, the Helmholtz free ener
function F can be calculated in the mean field approxim
tion, which is written as

F$ f ~rW,VW !%5F01rkTE f ~rW1 ,VW 1!ln$4p f ~rW1 ,VW 1!%drW1dVW 1

1
1

2
r2E f ~rW1 ,VW 1! f ~rW2 ,VW 2!

3V~rW1 ,VW 1 ,rW2 ,VW 2!drW1dVW 1drW2dVW 2 ,

wherer is the average number density,F0 is the ideal-gas
free energy, andr f (rW,VW ) is the one-particle distribution
function normalized by*r f (rW,VW )drWdVW 5N, whereN is the
total number of particles in the system. By minimizingF

with respect to f (rW,VW ) under the constrain
*r f (rW,VW )drWdVW 5N, one can obtain the mean field sel
consistency equations and the corresponding mean field
tential Vmf . From this simple introduction, one can see th
in this type of mean field theory, only the molecule-molecu
orientation correlation is taken into account, and t
molecule-molecule spatial correlation is neglected. It h
been shown that such a mean field theory is rather succe
in predicting certain thermodynamic properties of liqu
crystals, e.g., phase diagrams, order parameters, etc.
poor in predicting volume change at transition, latent he
and maximum supercooling temperature@1#. While the ori-
entation correlation of molecules may be dominant in de
mining the physical properties of liquid crystals, howev
the short-range spatial correlation of molecules may h
some effects in some aspects and cannot be neglected
pletely. But as has been shown, the inclusion of both ori
tation and spatial correlation effects in the mean field the
is rather difficult. To overcome this shortcoming of the M
type of mean field theory, in the nematic case, some auth
have presented an orientation-averaged pair correlation f
4289 © 1998 The American Physical Society
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tion method within the framework of the MS type of mea
field theory to take into account the short-range spatial c
relation effects@9#. In a previous paper@10#, an extended
mean field theory that includes both orientation and spa
correlation effects of molecules has been proposed for n
atic liquid crystals. The theory is based on Lennard-Jo
and Devonshire’s mean field treatment of isotropic class
liquids and it is found that the theory is in good agreem
with the experimental results. Recently, an extend
Landau–de Gennes phenomenon theory of the nem
isotropic phase transition was developed to include the c
pling of the density and the orientation order parameter
it is found that most of the experimental measurements
cept (dQ/dT)T5NI , where T is temperature andQ is the
orientation order parameter, can be reproduced reason
well @11#. All these extensions of the MS mean field theo
show that the short-range spatial correlation of molecu
may have some significant effects on some physical pro
ties of liquid crystals and should not be neglected. In t
paper we will apply the extended mean field theory dev
oped in the previous paper@10# to the case of cholesteri
liquid crystals. Our main purpose is to see whether the sh
range spatial correlation effects of molecules may have s
contribution to the formation of the helical structure, whi
characterizes cholesteric liquid crystals. This paper will
arranged as follows: In Sec. II, we will briefly review th
existing potential model of cholesterics and a simplifi
model potential is adopted. Then, based on the same
proach as in Ref.@10#, a set of mean field parameters and t
corresponding self-consistency equations are derived acc
ing to the adopted model potential. In Sec. III, some num
cal results are presented and the basic features of this th
are discussed.

II. MODEL AND THE EXTENDED MEAN FIELD
THEORY

It has been powerfully argued that cholesterics are m
up of chiral molecules and chirality is the major cause of
helical structure@2–5#. For the uniaxial, hard-rod-like chira
molecule, the pairwise potentialV(rW1 ,VW 1 ,rW2 ,VW 2) between
two molecules can be decomposed into two parts with
losing generality@12#:

V~x1 ,x2!

5VN~r 12,VW 1•rW12,VW 2•rW12,VW 1•VW 2!

1~VW 13VW 2•rW12!Vx~r 12,VW 1•rW12,VW 2•rW12,VW 1•VW 2! ~1!

in which xi[(rW i ,VW i). The VN term accounts for the forma
tion of the nematic phase, and theVx term manifests what is
known as chirality, which vanishes for nonchiral molecul
A completely general form ofV(x1 ,x2) is rather difficult to
determine, so a more instructive and manageable but
general form is usually assumed, which can be written a

V~x1 ,x2!5VN~r 12,VW 1•VW 2!

1~VW 13VW 2•rW12!Vx~r 12,VW 1•VW 2!. ~2!
r-
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Following the symmetry consideration, one can expandVN
andVx in a series of Legendre polynomials:

VN~r 12,VW 1•VW 2!5V0~r 12!1(
l 51

`

V2l~r 12!P2l~VW 1•VW 2!,

~3!

Vx~r 12,VW 1•VW 2!5(
l 50

`

V2l 118 ~r 12!P2l 11~VW 1•VW 2!. ~4!

In particular, the truncated form

V~x1 ,x2!5V0~r 12!1VN~r 12!P2~VW 1•VW 2!

1Vx~r 12!P1~VW 1•VW 2!~VW 13VW 2•rW12! ~5!

is rather familiar and most widely adopted. In this paper,
will also adopt this truncated form, considering that it co
tains most of the physics of cholesteric liquid crystals, and
rather more convenient to be dealt with than the gene
form. As to the forms ofV0(r ), VN(r ), and Vx(r ), we
choose them to be

V0~r !5e0F S s

r D 12

2S s

r D 6G , ~6!

VN~r !52eNS s

r D 12

, ~7!

Vx~r !52ex

1

r S s

r D 7

. ~8!

The forms of Eqs.~6! and~8! are the usually adopted form
in the literature~see, for example, Refs.@9#, @13#, and@14#!,
and the form of Eq.~7! was suggested by Refs.@10# and@15#.

To establish the mean field theory corresponding to
above assumed molecular potential, we will follow the a
proach of Lennard-Jones and Devonshire~LJD! @16,17#.
First, it is necessary to note that due to the form ofV0(r i j ),
there is in general an equilibrium separation between
molecules. Leta denote the averaged equilibrium separati
distance between two nearest-neighbor molecules. The
approach consists of focusing on one molecule denoted
molecule i , and inscribing its position inside a sphere
radiusa ~not necessarily located at its center!. By consider-
ing an isotropic distribution of the nearest-neighbor m
ecules over this sphere, the resulting approximate effec
potential seen by moleculei has a minimum at the center o
the sphere, denoted as the equilibrium position~by LJD!. Let
r i be the distance of moleculei from the center of the
sphere, the equilibrium position. The effective potential m
be parametrized as a function ofr i . This procedure has bee
done in some detail by Lennard-Jones and Devons
@16,17#. Following their approach, we have generalized t
LJD calculation to molecules with the anisotropic interacti
of Eq. ~5!. The main point of our generalization is to allo
moleculei ’s nearest-neighborj also to deviate from the re
spective equilibrium positions, which are isotropic over t
sphere, and on account of the symmetry of the interactio
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is assumed that the pairwise potentialV(r i
W ,VW i ,rW j ,VW j ) can

be replaced equivalently by an effective averaged pair po
tial:

Veff~r i ,r j ,Q i ,Q j !

[
1

~2p!4E du idu jdf idf jdF idF j

3r i
2sinu ir j

2sinu jV~rW i ,VW i ,rW j ,VW j !, ~9!

where we have denotedrW i[RW i1rW i . RW i is the position vector
of the i th molecule’s equilibrium position~i.e., the center of
the sphere!, rW i is the position vector of the mass center of t
i th molecule relative to the center of the sphere. (u i ,f i) are
the polar and azimuthal angles ofrW i , and (Q i ,F i) are the
polar and azimuthal angles ofVW i relative to the local director
nW (RW i). Because the calculation is straightforward but ve
trivial, we write here only the final form:

Veff~r i ,r j ,Q i ,Q j !

5e0F S s

a D 12

l ~r i !l ~r j !2S s

a D 6

m~r i !m~r j !G
2eNS s

a D 12

l ~r i !l ~r j !P2~cosQ i !

3P2~cosQ j !P2@nW ~RW i !•nW ~RW j !#

2exS s

a D 7

n~r i !n~r j !P2~cosQ i !P2~cosQ j !

3@nW ~RW i !•nW ~RW j !#@R̂i j •nW ~RW i !3nW ~RW j !#, ~10!

where

l ~r!5@1112~r/a!2125.2~r/a!4

112~r/a!61~r/a!8#@12~r/a!2#210, ~11!

m~r!5@11~r/a!2#@12~r/a!2#24, ~12!

n~r!5@112~r/a!210.2~r/a!4#@12~r/a!2#25, ~13!

cosQ i5VW i•nW ~RW i !, ~14!

cosQ j5VW j•nW ~RW j !, ~15!

R̂i j 5
RW i j

uRW i j u
. ~16!

To obtain Eq.~10! we have used the following relation:

Pn~cosuAB!5Pn~cosuA!Pn~cosuB!

12 (
m51

n
~n2m!!

~n1m!!
Pn

m~cosuA!

3Pn
m~cosuB!cosm~fA2fB!,
n-

y

whereuAB5AW •BW (AW , BW are unit vectors!, (uA , fA) and (uB ,
fB) are the polar and azimuthal angles ofAW andBW relative to
the same frame of reference. From Eq.~10! one can obtain
the mean field potentialVmf experienced by moleculei di-
rectly by averaging over the coordinates of moleculej :

Vmf~r i ,Q i !5( 8
j

H e0F S s

a D 12

^ l & l ~r i !2S s

a D 6

^m&m~r i !G
2eNS s

a D 12

^ l & l ~r i !

3^P2&P2~cosQ i !P2@nW ~RW i !•nW ~RW j !#

2exS s

a D 7

^n&n~r i !^P2&P2~cosQ i !

3@nW ~RW i !•nW ~RW j !@R̂i j •nW ~RW i !3nW ~RW j !#%, ~17!

where ^ l &[^ l (r j )&, ^m&[^m(r j )&, ^n&[^n(r j )&, ^P2&
[^P2@VW j•nW (RW j )#&, and ^ & denotes the ensemble averag
values. All these averaged values are assumed to be sit
dependent. The sum( j8$ % includes only the nearest
neighbor molecules. To complete the sum( j8$ %, we can

expandnW (RW j )2nW (RW i) into the following series:

nW ~RW j !2nW ~RW i !5(
a

Ri j a

]nW

]xa
1

1

2(bg
Ri j bRi j g

]2nW

]xb]xg
1•••,

whereRW [(x1 ,x2 ,x3), RW i j 5RW i2RW j . In the case of the iso-
tropic, homogeneous distribution of the nearest-neigh
molecules’ equilibrium position over the sphere of molecu
i , after some simple calculation, one can obtain the follow
relations:

( 8
j

P2@nW ~RW i !•nW ~RW j !#5z02
1

2
z0a2(

ab

]nb

]xa

]nb

]xa
1O~a3!,

~18!

( 8
j

@nW ~RW i !•nW ~RW j !#@RW i j •nW ~RW i !3nW ~RW j !#

5
1

3
z0a2(

abg
eabgna

]nb

]xg
1O~a3! ~19!

in which z0 is the number of the nearest-neighbor molecu
~set to twelve!. The higher order terms ofa3 are neglected.
Using these relations, the sum( j8$ % in Eq. ~17! can be com-
pleted, and then the mean fieldVmf experienced by molecule
i due to its nearest-neighbors can be expressed as

Vmf~r,s!5z0g0~r,s!1
1

2
z0a2g2~r,s!(

ab

]nb

]xa

]nb

]xa

2
1

3
z0ag3~r,s!(

abg
eabgna

]nb

]xg
, ~20!

where



te
ld
g

th
n
es
at
e

-
th

e
ob
itc
n

the
ype
ho-

lcu-
a

ns
ld

the
rs,
the
re,

en
ata,
ve
er-
this

ers,
era-

ion
tic-
the
n-
tion

S
y is
me
at

at

rre-
of
l-

ry

n

d

4292 57LIANGBIN HU, YONGGANG JIANG, AND RUIBAO TAO
g0~r,s!5e0F S s

a D 12

^ l & l ~r!2S s

a D 6

^m&m~r!G
2eNS s

a D 12

^ l & l ~r!^P2&P2~s!, ~21!

g2~r,s!5eNS s

a D 12

^ l & l ~r!^P2&P2~s!, ~22!

g3~r,s!5exS s

a D 7

^n&n~r!^P2&P2~s!, ~23!

s5cosQ. ~24!

In Eqs.~20! and~21!–~24! we have removed the subscripti
from the expressions. There are four mean field parame
^ l &, ^m&, ^n&, and ^P2& in the expression of the mean fie
potentialVmf ; they should be determined by the followin
self-consistency equations:

^ l &5E
0

0.5a

drE
0

1

ds l ~r! f ~r,s!, ~25!

^m&5E
0

0.5a

drE
0

1

dsm~r! f ~r,s!, ~26!

^n&5E
0

0.5a

drE
0

1

dsn~r! f ~r,s!, ~27!

^P2&5E
0

0.5a

drE
0

1

dsP2~s! f ~r,s!, ~28!

where

f ~r,s!5
1

Z
exp$2bVmf~r,s!%, ~29!

Z5E
0

0.5a

drE
0

1

ds exp$2bVmf~r,s!%. ~30!

Generally speaking, the structure of the director, i.e.,
form of nW (RW ), should be determined by the minimizatio
condition of the total free energy. But in the case of chol
teric liquid crystals, we can proceed with the usual ans
nW (RW )5(cos qz, sin qz, 0). Such a representation assum
that the director is uniformly twisted along thez axis with a
pitch p52p/q. Here q will be treated as a variational pa
rameter and determined by the minimization condition of
total free energy, which gives

p5
6paeN

ex

^g2~r,s!&

^g3~r,s!&
5

6paeN

ex
S s

a D 5 ^ l &^ l ~r!P2~s!&

^n&^n~r!P2~s!&
.

~31!

Equations~25!–~28! and ~31! constitute a set of complet
self-consistency equations. After solving them, one can
tain the values of the mean field parameters and the p
and then the free energy and the entropy of the system ca
calculated:
rs

e

-
z:
s

e

-
h,
be

S52k(
i

^ ln f ~r i ,s i !&, ~32!

F5
1

2(i
^V~r i ,s i !&1kT(

i
^ ln f ~r i ,s i !&. ~33!

III. NUMERICAL RESULTS AND DISCUSSION

In Sec. II, we have established the basic formulas of
extended mean field theory. In order to see whether this t
of mean field theory can describe the basic features of c
lesteric liquid crystals, we have done some numerical ca
lations. The numerical procedure will be as follows: For
given set of model parameterse0, eN , ex , s/a, and a given
temperatureT, we first solve the self-consistency equatio
~25!–~28! and ~31! to obtain the values of the mean fie
parameterŝ l &, ^m&, ^n&, ^P2&, and the pitchp by iteration
method, then substitute these quantities into Eq.~32! and Eq.
~33! to calculate the entropyS and the free energyF. Due to
the fact that there is much uncertainty in the choices of
form of the model potential, including the model paramete
and that our main purpose is only to see what effects
spatial correlation of molecules have on the helical structu
we will not try to make a quantitative comparison betwe
the numerical results of this theory and the experiment d
we will focus on the main features of this theory. We ha
carried out the numerical calculations for a number of diff
ent model parameters and find the main features of
theory may be summed as follows:

~1! For a set of appropriately chosen model paramet
the theory predicts a first order phase transition at a temp
ture TC as the temperature varies: whenT,TC , the liquids
are orientationally ordered and whenT.TC , they are orien-
tationally disordered. The basic features of this orientat
order-disorder phase transition are similar to the nema
isotropic phase transition except that a helical structure of
director will form when the system turns into the orientatio
ally ordered phase. The calculated value of the orienta
order parameter̂P2&, as well as the entropyS, will jump at
TC , and thê P2& jump as well as the entropy changeDS are
within a few percent of the corresponding values of the M
mean field theory. Although in these respects this theor
very similar to the MS mean field theory, there are so
important differences between them. It is well known th
the small magnitude of (TC2T* )/TC , where TC is the
nematic-isotropic phase transition andT* denotes the virtual
transition temperature~supercooling temperature!, has been a
long-standing puzzle in the physics of liquid crystals th
cannot be explained by the MS mean field theory@1#. By
extending the mean field theory to include the spatial co
lation effects of molecules one finds that the magnitude
(TC2T* )/TC becomes in accord with the experimental va
ues@10#. In addition, this theory also yields a value ofDV/V
and dTC /dP (P is pressure! which are in accord with the
experimental data@10#. Because these features of the theo
have been discussed in detail previously@10#, we will not
pursue them further in this paper. We will focus mainly o
the helical structure of the director.

~2! When the liquids turn into the orientationally ordere
phase as the temperature decreases to be lower thanTC , a
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macroscopic twist of the director, i.e., the helical structu
will form. This is the main difference between the choleste
phase and the nematic phase. The basic feature of the he
structure is that the pitch invariably depends on the temp
ture. To give a theoretical explanation of the temperat
dependence of the pitch, Keating@18# proposed a micro-
scopic model that assumed the forces opposing the twis
anharmonic so that a macroscopic twist results automatic
from the ensemble-averaging process. In his theory, the p
will decrease with the rising temperature. But experimen
results show that there are several types of temperature
haviors of the pitch@18–22#: ~i! The pitch increases with
decreasing temperature;~ii ! the pitch decreases with decrea
ing temperature;~iii ! the pitch increases with decreasing te
perature, and at a certain temperatureTd the helicity reverses
and the pitch decreases as temperature further decrease
overcome the shortcomings of Keating’s theory, Lin-Liuet
al. @12# proposed a molecular theory by including high
order terms in the model potential, which is described in S
I @see Eq. ~5!#. After adding two higher order term
V4(r 12)P4(VW 1•VW 2) and V3(r 12)P3(VW 1•VW 2)(VW 13VW 2•rW12)
into the model potential~5!, the MS type of mean field
theory can yield correctly the above mentioned three type
temperature behaviors of the pitch@12#. To see what type of
temperature behavior of the pitch will exist in our theory, w
have calculated the temperature dependence of the pitch
number of appropriately chosen model parameters, we
this theory also yields correctly three types of temperat
behaviors that are in qualitative agreement with the exp
mental results, as shown in Figs. 1~a!–3~a!. In Fig. 1~a!, the
pitch increases with decreasing temperature, correspon
to the case~i!. In Fig. 2~a!, the pitch decreases with decrea
ing temperature, corresponding to case~ii !. In Fig. 3~a!, the

FIG. 1. ~a! The temperature dependence of the pitch with
model parameterseN /e051, ex /e050.1, s/a51. ~b! The corre-
sponding temperature dependence of the orientation order pa
eter ^P2&.
,
c
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pitch increases with decreasing temperature; at a certain
perature it reaches a maximum, and then it decreases as
perature further decreases, corresponding to case~iii !. For
comparison we have also plotted the corresponding temp
ture dependences of the orientation order parameter^P2& in
each

e

m-

FIG. 2. ~a! The temperature dependence of the pitch with
model parameterseN /e050.2, ex /e050.005, s/a51.0. ~b! The
corresponding temperature dependence of the orientation orde
rameter̂ P2&.

FIG. 3. ~a! The temperature dependence of the pitch with
model parameterseN /e050.8,ex /e050.04,s/a51.0.~b! The cor-
responding temperature dependence of the orientation order pa
eter^P2&.
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case, which are shown in Figs. 1~b!–3~b!. It can be seen
there is little difference between the^P2&-T curves. The nu-
merical results also show that the temperature behavio
the pitch depends mainly on the value ofeN /e0, and is not
sensitive to the change ofex /e0, as is shown in Fig. 4. While
the temperature behavior mainly depends on the value
eN /e0, the length of the pitch has a far more sensitive d
pendence on the value ofex /e0 than oneN /e0 @see Figs. 4,
5~a!, and 6~a!#. The smallerex /e0 is, the largerp is, andp
→` whenex /e0→0 @this can be seen from Eq.~31!#, which
corresponds to the nematic case. We have also plotted
dependences of the orientation order parameterP2 on the
value ofeN /e0 andex /e0 in Figs. 5~b!–6~b!, from which we
can see that the order parameter^P2& is sensitive to the
change ofeN /e0, but almost independent ofex /e0.

~3! Although the MS type of mean field theory of Re

FIG. 4. The temperature dependences of the pitch for the dif
ent values ofex /e0 ~shown in the figure!. The other parameters ar
fixed to beeN /e050.8, s/a51. It is noted that the temperatur
behavior of the pitch is not sensitive to the change ofex /e0.

FIG. 5. ~a! The dependence of the pitch on the value ofeN /e0.
The other parameters are fixed to beex /e050.1, s/a51.0, T/e0

51. ~b! The corresponding dependence of the orientation or
parameter̂ P2& on the value ofeN /e0.
of

of
-

he

@12# yields similar temperature behaviors of the pitch as
present theory, it should be pointed out there are some
portant differences between the two theories:~i! In the

former theory, two higher order termsV4(r 12)P4(VW 1•VW 2)

and V3(r 12)P3(VW 1•VW 2)(VW 13VW 2•rW12) must be included in
the model potential~5!, or else a temperature-independe
pitch will be obtained. But in the present theory, the tw
higher order terms need not to be included to get
temperature-dependent pitch. The reason is that in
present theory the spatial correlation effects of molecules
also taken into account.~ii ! In the former theory, the tem
perature behavior of the pitch arises from the tempera
dependence of the ratio ofs4(T)/s2(T), where s4(T)

[^P4@VW •nW (RW )#& ands2(T)[^P2@VW •nW (RW )#& are the orien-
tation order parameters. But in the present theory, from
~31!, one can see that the temperature dependence
the pitch arises from the temperature depende
of ^g2(r,s)&/^g3(r,s)&>(s/a)5(eN /ex)^ l (r)&2/^n(r)&2,
which are mainly related to the spatial correlation effects
the molecules@see Eqs.~11!–~13!#. ~iii ! In the case of the
helicity reverse, the pitch remains finite at all temperature
the present theory, as is shown in Fig. 3~a!, but in the former
theory, the pitch diverges at a certain temperatureTd , i.e., at
T5Td the cholesteric phase changes into the nematic ph
This divergence of the pitch may be due to the effects of
higher order terms of the interaction. This significant diffe
ence between the two types of mean field theory shows
the higher order terms of the interaction may have a gr
contribution to the temperature dependence of the pitch,
pecially if one wants to make a quantitative comparison
tween the results of the theory and the experimental data

r-

r

FIG. 6. ~a! The dependence of the pitch on the value ofex /e0.
The other parameters are fixed to beeN /e050.8, s/a51.0, T/e0

51.0. ~b! The corresponding dependence of the orientation or
parameter̂ P2& on the value ofex /e0.
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effects of higher order terms of the interaction must be
cluded, but it may be argued that one must first incorpor
the lower order effects that should present such as the sp
correlation effects before assessing the effects due to
higher order terms. The results of this paper show that
spatial correlation of molecules may have a non-negligi
contribution to the formation of the helical structure a
should be taken into account in the theory. For further i
-

.

.

hy

y

-
te
tial
he
e
e

-

provement of the present theory, the effects of the hig
order terms of the interaction, should be included.
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